
Comparison of Memory Management Systems of BSD,
Windows, and Linux

Gaurang Khetan

Graduate Student,
Department of Computer Science,
University of Southern California,

Los Angeles, CA.
gkhetan@usc.edu

December 16, 2002

Abstract

This paper is a study of memory management systems
of an operating system. We begin with a brief intro-
duction to memory management systems and then we
compare the memory management systems of real-
life operating systems - BSD4.4, Windows 2000 and
Linux 2.4

1 Introduction

In this paper, we will be comparing the Memory
Management (MM) Sub-Systems of these operating
systems - BSD 4.4, Linux 2.4 and Windows 2000.
BSD 4.4 was chosen since it is a representative Unix
version including important operating system design
principles, and today many operating systems like
FreeBSD [3], NetBSD [5] and OpenBSD [6] are

based on it. Moreover, it is very well documented
in [12]. Windows 2000 was chosen since it is a very
popular operating system for use as a desktop espe-
cially with beginners, and has now evolved into a ma-
ture operating system. Linux [4] 2.4 was chosen be-
cause it is growing more and more popular by the day,
and seems to have an important place in the future.
We will not be much interested in the performance
characteristics of these systems in this paper, instead
our focus will be on their design and architecture.

2 Memory Management Systems

The Memory Management System is one of the im-
portant core parts of an operating system. Its basic
function is to manage the memory hierarchy of RAM
and hard disks available on a machine. Its important
tasks include allocation and deallocation of memory

1



to processes taking care of logistics,and implementa-
tion of Virtual Memory by utilizing hard disk as extra
RAM. The Memory system should be optimized as
far as possible, since its performance greatly affects
the overall performance and speed of the system.

2.1 Virtual Memory

An important concept in the context of MM Systems
is Virtual Memory. Back in the early days of com-
puting, researchers sensed the ever growing memory
requirements of application programs, so the idea of
Virtual Memory was born. The idea is to provide an
application program the illusion of the presence of a
very large amount of memory available for its use.
The kernel will provide such a facility by making use
of secondary storage - the hard disk - to fulfill the ex-
tra space requirements. [13]

For the virtual memory system to work, we require
some mapping function which will perform address
translation, converting the virtual address to the phys-
ical address. The virtual address is the address which
the application uses to refer to a memory location,
and the physical address is the actual memory loca-
tion passed out to the local memory bus. This func-
tion is generally one of Paging, or Segmentation, or
both - depending on the kernel, processor architecture
and its state.

2.2 Paging

In Paging, the address space (both virtual and real) is
divided into fixed-sized (though they can be multiple-
sized [14]) pages. The pages can be individually ma-
nipulated, and placed at different places in the phys-
ical memory and the hard disk. The address trans-
lation is actually done by the Memory Management
Unit (MMU) of the processor by the use of a Page

Figure 1: Page table

Table, as shown in Figure 1. Page tables specify the
mapping between virtual pages and physical pages -
i.e. which virtual memory page currently occupies
which physical page. The MMU converts the virtual
memory address to a physical address which consists
of a page frame number and an offset within that page.
Protection can be applied on an page by page basis.

Since the virtual address space is huge compared
to the physical memory, we must use the hard disk
to store pages which cannot be stored in the phys-
ical memory. Associated with each virtual page in
the page table is a bit to denote whether the page is
present in the physical memory or not. If the page
is not present in the physical memory, the hardware
generates a page fault exception. This exception is
handled in software, which places the required page
back from the hard disk to the physical memory, or if
it is invalid, generates an error.

Coffman and Denning [2] characterize paging sys-
tems by three important policies:

2



1. When the system loads pages into memory - the
fetch policy.

2. Where the system places pages into memory -
the placement policy

3. How the system selects pages to be removed
from main memory when pages are unavailable
for a placement request - the page replacement
policy.

The placement policy is of importance only for op-
timizing certain behavior [16]. So, practically, the be-
havior of a paging system is dependent only on the
fetch and placement policy. In most modern systems,
for the fetch policy a demand paging system is used in
which the system brings a page to memory only when
it is required, however sometimes prepaging certain
pages that are expected to be required. With regard
to the page replacement policy, many algorithms have
been developed over the years. An account can be
found in [19]. Comparisons of performance of page
replacement algorithms can be found in many papers,
such as [15].

3 Comparison

Now we shall concentrate on the MM systems of
Windows 2000, Linux 2.4 and BSD 4.4.

The BSD4.4 VM system is based on Mach 2.0,2.5
and 3.0 VM code. The Windows 2000 was developed
in a long series of operating systems since MSDOS.
The Linux 2.4 has been developed by hackers origi-
nally founded by Linux Torvalds.

Other than the resources cited elsewhere in this ar-
ticle, more information on the topic can also be ob-
tained from [18, 17, 21].

Instead of describing each of the system’s MM sys-
tem in detail, which will be a very long exercise, we
compare here some of their significant parts.

All the three systems have modern MM systems,
and have surprisingly a lot in common. The data
structures are quite similar, and the features of each
are also quite similar. Some similarities of these sys-
tems are enumerated below -

� Hardware Abstraction Layer: All OSes have
a layer called the hardware abstraction layer
(HAL) which does the system-dependent work,
and thus enables the rest of the kernel to be
coded in platform independent fashion. This
eases porting it to other platforms.

� Copy-on-write: When a page is to be shared, the
system uses only one page with both processes
sharing that same copy of the page. However,
when one of the process does a write onto the
page, a private copy is made for that process,
which it can then manipulate individually. This
gives a lot better efficiency.

� Shadow paging: A shadow object is created for
an original object such that the shadow object
has some of its pages modified from the origi-
nal object, but shares the rest of the pages with
the original object. They are formed as a result
of Copy-On-Write action.

� A Background daemon: There exists a back-
ground daemon which is invoked periodically
and performs tasks like page flushing, freeing
unused memory, etc.

� Memory mapped Files: A file can be mapped
onto memory, which then can be used with sim-
ple memory read/write instructions.

3



� Inter-Process Communication: The memory
mapped files are allowed to be then shared be-
tween processes forming a method for inter-
process communication.

In the following subsections, we will compare
these systems on certain aspects.

3.1 Data Structures to describe a pro-
cess space

Now we will study the data structure the systems use
to maintain and keep track of the virtual memory.

3.1.1 BSD4.4

The BSD4.4’s data structures are shown in the fig-
ure 2. This structure is repeated for every process,
since each process essentially has its own flat virtual
address space.

The main structures are -

� vmspace

� vm map

� vm map entry

� object

� shadow object

� vm page

The vm pmap is a hardware dependent layer. It
takes care of memory management at the lowest
level, generally taking care of the different meth-
ods different processors have for virtual memory pro-
gramming, etc. Putting the hardware dependent code
into just one module makes the rest of the VM Code

Figure 2: BSD4.4 Data Structures for managing Pro-
cess Virtual Memory

hardware independent, which makes for a modular
design and renders it relatively easier to port the
code to different architectures. The vm map struc-
ture contains a pointer to vm pmap and pointer to a
vm map entry chain. One vm map entry is used for
each contiguous region of the virtual memory that has
the same protection rights and inheritance. This then
points to a chain of vm object objects. The last one
in the list is the actual object (file, etc), and the oth-
ers are shadow objects. Shadow objects will be dealt
with in another aspect of comparison. The object has
a pointer to a list of vm page objects, which represent
the actually physical memory pages. These pages in
the main memory are considered as cache of the hard
disk, a virtual memory concept. The vm object also
consists pointers to functions which will perform op-

4



Figure 3: Windows NT 4.0 Data Structures for man-
aging Process Virtual Memory

erations on it.

3.1.2 Windows

The data structures used by Windows NT are as
shown in Figure 3.

Instead of a linked list, the Windows NT System
keeps it in a tree form. Each node of the tree is
called Virtual Address Descriptors(VAD). Each VAD
denotes a range of address which has the same protec-
tion parameters and commit state information. The
tree is also a balanced, which means that depth of the
tree is kept at a minimum. This then implies that the
search time, say when finding the node containing a
location, will be relatively low. The VAD marks each
node as either committed, free, or reserved. Commit-
ted are the ones which have been used i.e. code or
data has been mapped onto it. Nodes that are marked
free are yet unused, and those marked reserved are the

ones which are not available for being mapped until
the reservation is explicitly removed. Reservation are
used in special cases, for example, a node can be re-
served for a thread’s stack when a thread is created.
The link to the root of the tree is kept in the Process
Control Block.

3.1.3 Linux

Linux implements the virtual memory data structure
in a similar manner to UNIX. It maintains a linked list
of vm area structs. These are structures which repre-
sent continuous memory areas which have the same
protection parameters etc. This list is searched when-
ever a page is to be found that consists a particular
location. The structure also records the range of ad-
dress it is mapping onto, protection mode, whether
it is pinned in memory(not page-able), and the direc-
tion (up/down) it will grow in. It also records whether
the area is public or private. If the number of entries
grows greater than a particular number, usually 32,
then the linked list is converted into a tree. This is a
quite good approach which uses the best structure in
the best situations.

3.2 Distribution of Process Address
Space

All the three systems distribute the process virtual ad-
dress space in a similar manner. Higher part of it
is used by the kernel, while the process can use the
lower part. The kernel part of the space of all pro-
cess usually point to the same kernel code. So while
switching a process, we need to switch the page ta-
ble entries of the lower part, while the upper part can
remain the same. In Linux and BSD, usually 3GB
is kept for the process and 1 GB given to the kernel,
while in Windows, 2GB are kept for each.

5



3.3 Page Replacement

Page Replacement is an important part of any MM
System. Basically, page replacement concerns with
choosing which page to page-out - i.e. swap out from
memory, whenever the need for more free memory
arises.

The Ideal Page Replacement Algorithm is to re-
move the page which will be required for access in
the most distant future. Doing this will cause the
least number of page faults, and thus least wastage of
time doing swapping, in turn improving system per-
formance and throughput. But since it is not possible
to know what pages will be accessed in the future, the
ideal page replacement algorithm is impossible to im-
plement.

Let us see how each of the system works for page
replacement.

3.3.1 BSD4.4

The system uses demand paging system(with some
prepaging) for its fetch policy, and an approximation
of global Least Recently Used algorithm.

Demand Paging means that pages will be brought
to memory only when they are required. In practical
circumstances, however, the pages that are expected
to be used are also brought to memory initially itself.

For paging out, the system operates with a global
replacement algorithm. Global means that the sys-
tem chooses the page to be removed irrespective of
the process using that page, which means pages of all
processes are considered equally and some other pa-
rameter is used for selection.

The system divides the main memory into four
lists:-

1. Wired: These pages are locked. They cannot be
move be swapped out. These pages are usually

used by the kernel.

2. Active: The pages that are (supposed to be) ac-
tively being used are put in this list.

3. Inactive: The inactive pages, which have known
content, but no active use for some time.

4. Free: The pages which have no known content,
and hence are immediately usable.

A Page daemon is used for maintaining some
amount of free memory in the system. The page dae-
mon is a process that is started in the beginning in
the kernel mode, and remains until the computer is
shut off. The goal of the page daemon is to maintain
a minimum amount of pages in the free list, specif-
ically stored in free min (usually 5 percent of mem-
ory). There is another variable free target, which
is usually 7 percent of memory - the daemon stops
working when it has achieved its target of free target
amount of free memory. The amount of pages in the
inactive list is also to be maintained at at least inac-
tive target(which is usually 33 percent of memory).
However the value of inactive target is tuned auto-
matically by the system with time. So whenever the
free memory falls below free min the daemon is in-
voked.

The daemon starts scanning the inactive list from
the oldest to the youngest and does the following for
each page:-

� If the page is clean and unreferenced, move it to
the free list.

� If the page has been referenced by an active pro-
cess, move it from the inactive list to the active
list.

� If the page is dirty and is being written to the
swap file currently, skip it for now.

6



� If the page is not dirty and is not being actively
used, then it is written back to the disk.

After scanning, it checks whether the inactive list
is smaller than inactive target, then, it starts scanning
the active list to bring some pages back to the inactive
list.

There is also a concept of swapping in BSD. When
it cant keep up with the page faults even while per-
forming its function, or if any process has been inac-
tive for more than 20 seconds, the page-out daemon
goes into swapping mode. In the swapping mode,
it takes the process which has been running for the
longest time, and swaps it completely back to the hard
disk, or secondary store.

3.3.2 Windows

The system used by Windows in this case it too so-
phisticated and complicated.

Windows uses clustered demand paging for fetch-
ing pages, and the clock algorithm for the page re-
placement.

In Clustered demand paging, the pages are only
brought to memory when they are required. Also, in-
stead of bring 1, Windows, often brings a cluster of
them of 1-8 pages, depending on the current state of
the system.

The kernel receives 5 kinds of page faults -

� The page referenced is not committed.

� A protection violation has occurred.

� A shared page has been written.

� The stack needs to grow.

� The page referenced is committed but not cur-
rently mapped in.

The first two are irrecoverable errors. The third in-
dicates an attempt to write to read-only page. Copy
that page somewhere else and make the new one
read/write. This is how copy-on-write works. The
fourth needs to be responded by finding an extra page.

The most important point about the Windows Pag-
ing Systems that it makes heavy use of the working
set concept. The working set is defined as the amount
of main memory currently assigned to the process, so
the working set consists of its pages that are present
in the main memory. The size of the working set
is, however, not constant. So the disadvantages that
come with working sets are heavily reduced.

The clock algorithm used by Windows is local.
When a page fault occurs, and faulting process’s
working set is below a minimum threshold, then the
page is simply added to the working set. On the
other hand, if the working set is higher than one an-
other threshold, then it reduces the size of working
set. Hence the algorithm can be called global. But
the system does do some global optimizations too.
For example, it increases the working set of processes
that are causing a large number of page faults, and de-
creasing the working set for those who do not require
enough memory.

Instead of just working when there is a page fault,
just like Unix, Windows has a daemon thread work-
ing too, but called in this case as Balance Set Man-
ager. This is invoked every 1 second, and it checks
whether there is enough free memory. If there is not,
then it invokes the working set manager. The work-
ing set manager maintains to keep the free memory
above threshold. It checks the working sets of pro-
cess from old and big to the young and small. And
depending on how many page faults they have gener-
ated, it increases or decreases them. If a page’s refer-
ence bit is clear, then counter associated with the page
is incremented. If the reference bit is set, the counter

7



Figure 4: Windows NT 4.0 Data Structures for man-
aging Process Virtual Memory

is set to zero. After the scan, pages with the highest
counter are removed from the working set. Thus, the
global aspect of this clock algorithm is given by this
working set manager.

Windows divides the list of pages into four lists:-

1. Modified Page List

2. Stand-bye Page list

3. Free Page list

4. Zeroed Page List

These are shown in figure 4
The first is list of dirty pages, stand-bye is a list of

clean pages, are currently associated with a process.
Whereas Free Pages are those clean pages which are
not even associated with some process. The Zeroed
list is the list of zeroed out pages, if needed.

The transitions between these lists is handled by
working set manager and some other daemon threads
such as - swapper thread, mapped page write and
modified page writer.

3.3.3 Linux

Up to Linux 2.2, the Linux VM had focused on sim-
plicity and low overhead. Hence it was rather quite

primitive and had many problems, especially under
heavy load. It was influenced by System V.

However Riel [20] has worked a lot on the Linux
VM in the past couple of years, and improved it
a lot for the Linux 2.4 release.(his discussion with
Matthew Dillon [1], a FreeBSD VM Hacker, is inter-
esting and informative.)

Linux uses a demand paged system with no prepag-
ing. [19]

Until kernel version 2.2, Linux used NRU algo-
rithm for page replacement, but due to the various
shortcomings of the algorithm, they have changed
it and implemented an approximate Least Recently
Used in 2.4.

The aging to effect LRU is brought about by in-
creasing the age (a counter associated with a page) of
a page by a constant when the page is found to be ref-
erenced during a scan, and, decreased exponentially
(divided by 2) when found not to have been refer-
enced. This method approximates LRU fairly well.

Linux 2.4 divides the virtual pages into 4 lists [9]-

1. Active list

2. Inactive-dirty list

3. Inactive-clean list

4. Free list

To separate the pages which were chosen for evic-
tion, the inactive-dirty list was made. Normally, the
active pages are on the list 1. But as time passes, if
some of the pages are not active, then their age de-
creases and goes down to 0, which indicates it is a
candidate for eviction. Such pages are moved from
list 1 to list 2.

The inactive list in BSD4.4 (and FreeBSD) has a
target of 33%, which the daemon manages to keep it

8



at that level. However, for linux 2.4, the inactive list
size was made dynamic. Now the system itself will
decide how many inactive pages it should keep in the
memory given the particular situation.

The unification of the buffer cache and page cache
has been completed in 2.4, as had been implemented
in FreeBSD.

Another optimization present in the Linux Kernel,
is that they now recognize continuous I/O, i.e. they
now decrease the priority of the page “behind” and so
that page becomes a candidate for eviction sooner.

The page daemon in Linux is kswapd which awak-
ens once a second, and frees memory if enough is not
available.

And the flushing is done by another daemon bd-
flush, which periodically awakes to flush dirty pages
back to the disk. The page flushing that takes place
from the inactive list, does not happen in an ad-hoc
fashion, but the system waits for the right time, when
clustering could be used, and disk read-writes could
be minimized, thus optimizing the flushing.

4 FreeBSD, NetBSD, OpenBSD
and UVM

The discussion given above pertains to BSD4.4
which is now outdated and is no longer in use.
However, there are many successors to BSD4.4 like
FreeBSD, NetBSD, etc which are based on its code.
Though they have many similarities, the newer ver-
sions have undergone some significant development
since BSD4.4.

Regarding the VM, the FreeBSD VM has been de-
veloped and optimized a lot through the work of John
Dyson, David Greenman, and Matthew Dillon. [10].

And NetBSD and OpenBSD now have evolved to

using UVM [8], which was developed as a PhD the-
sis [7]. The authors of UVM claim that UVM design
is much better than both BSD4.4 and FreeBSD.

The designs of the VMs of FreeBSD and Linux
have been compared in this paper [11]. But the au-
thor of this article could not find sufficient evidence to
give verdict on the comparison of performance of the
VMs of Linux and the BSDs, which is still debated.

5 Comments and Conclusion

All the three systems have originated in different
backgrounds - BSD4.4 in Academia, Windows in
Commercial Settings, and Linux in Hackers settings.

All the three are pretty modern and have sound the-
oretical concepts, and are all suitable for production
environments.

They have a lot in common, and few differences,
technically speaking.

Windows, being developed with strong monetary
motivation, has gone through more effort and thought
in its design and development. And one must say that
the design decisions made at various levels are tended
to be conducive to better performance.

In the case of Unix-based systems like BSD4.4 and
Linux, the decision was taken often favoring simplic-
ity against performance.

Thus Windows has developed into sophisticated,
complex code whereas Unix is simple and elegant but
still modern.

The result of which is that Windows has more fea-
tures but is difficult to maintain and improve from the
developers’ view, while Unix has less features but is
easier to maintain and develop.

However, for the end-user, Windows is likely to
give better performance while occasionally crashing.

Still more research and development is required for

9



the Open Source Systems, and there is good scope for
it.

It is quite clear that documentation on Open Source
operating systems like FreeBSD and Linux is lacking,
especially ones which are comprehensive and up-to-
date. It seems that as soon as some documentation
is completed, the fast development of these operating
systems render them out of date.

The rate of development of these Open Source Op-
erating systems, which are maintained by hundreds
and thousands of hackers around the world, is stag-
gering. It may well be expected that in the future,
these operating systems become at par or better than
the commercial offerings.

References

[1] Discussion between Matthew Dillon and Rik
van Riel. The linux-mm mailing list, 2000.
Available on http://mail.nl.linux.org/linux-
mm/2000-05/msg00419.html.

[2] E. G. Coffman and P. J. Denning. Operating
Systems Theory. Prentice Hall, 1973.

[3] Various Contributors. The FreeBSD
Project. Further information can be found
on http://www.freebsd.org.

[4] Various Contributors. The Linux Project.
Further information can be found on
http://www.linux.org.

[5] Various Contributors. The NetBSD Project.
Further information can be found on
http://www.netbsd.org.

[6] Various Contributors. The OpenBSD
Project. Further information can be found
on http://www.openbsd.org.

[7] C. Cranor. Design and implementation of the
uvm virtual memory system, 1998.

[8] Charles D. Cranor and Gurudatta M. Parulkar.
The UVM virtual memory system. In Proceed-
ings of the Usenix 1999 Annual Technical Con-
ference, pages 117–130, 1999.

[9] Brazil Dept of Computer Science, Univesity of
Sao Paulo. Linux 2.4 vm overview. Available on
http://linuxcompressed.sourceforge.net/vm24/.

[10] Matther Dillon. Design elements of the
FreeBSD VM system. DaemonNews, January
2000.

[11] Rohit Dube. A comparison of the memory
management sub-systems in freeBSD and linux.
Technical Report CS-TR-3929, 1998.

[12] M.K. McKusick et al. The Design and
Implementation of 4.4BSD Operating System.
Addison-Wesley, 1996.

[13] T. Kilburn et al. One level storage system. IRE
Transactions, EC-11(2):223–235, 1962.

[14] Yousef A. Khalidi, Madhusudhan Talluri,
Michael N. Nelson, and Dock Williams. Vir-
tual memory support for multiple page sizes. In
Workshop on Workstation Operating Systems,
pages 104–109, 1993.

[15] W.F. King. Analysis of demand paging algo-
rithms. In In International Federation for In-
formation Processing Conference Proceedings,
pages 485–490, 1972.

10



[16] T. Romer. Using virtual memory to improve
cache and TLB performance. Technical Report
TR-98-05-03, 1998.

[17] Mark Russinovich. Inside memory mangage-
ment. Windows and .NET magazine, June June
1998.

[18] David A. Solomon and Mark E. Russinovich.
Inside Windows 2000. Microsoft Press, third
edition, 2000.

[19] Andrew Tanenbaum. Modern Operating Sys-
tems. Prentice Hall, 2001.

[20] Rik van Riel. Page replacement in linux 2.4
memory management. In Proceedings of the
USENIX Annual Technical Conference, 2001.

[21] Paul R. Wilson. The GNU/Linux 2.2 virtual
memory system, January 1999.

11


